1662

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 6, JUNE 2007

Incremental Kernel Principal
Component Analysis

Tat-Jun Chin and David Suter, Senior Member, IEEE

Abstract—The Kkernel principal component analysis (KPCA) has
been applied in numerous image-related machine learning appli-
cations and it has exhibited superior performance over previous
approaches, such as PCA. However, the standard implementation
of KPCA scales badly with the problem size, making computations
for large problems infeasible. Also, the ‘“batch” nature of the stan-
dard KPCA computation method does not allow for applications
that require online processing. This has somewhat restricted the
domains in which KPCA can potentially be applied. This paper in-
troduces an incremental computation algorithm for KPCA to ad-
dress these two problems. The basis of the proposed solution lies
in computing incremental linear PCA in the kernel induced fea-
ture space, and constructing reduced-set expansions to maintain
constant update speed and memory usage. We also provide ex-
perimental results which demonstrate the effectiveness of the ap-
proach.

Index Terms—Enabling online processing, incremental kernel
principal component analysis (KPCA), reduced-set expansions, re-
ducing time complexity.

1. INTRODUCTION

ONVENTIONAL linear subspace methods such as prin-

cipal component analysis (PCA) and Fisher’s discrimi-
nant analysis (FDA) can only produce linear subspace feature
extractors. These are unsuitable for highly complex and non-
linear data distributions. In contrast, kernel subspace methods
such as kernel PCA (KPCA) and kernel FDA (KFDA) can cap-
ture higher-order statistics present in a dataset, thus producing
nonlinear subspaces for better feature extraction. In principle,
the kernel methods function by nonlinearly mapping a set of
training data to a higher dimensional feature space where con-
ventional linear subspace methods are performed, with the re-
sulting subspaces being “nonlinear” with regards to the orig-
inal input space. In practice, the mapping is performed implic-
itly via the “kernel trick,” where an appropriately chosen kernel
function is used to evaluate dot products of mapped input space
vectors without having to explicitly carry out the mapping. In
this paper our focus is on KPCA which has been used in a
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wide range of applications such as face recognition [1], single
frame super-resolution [2], image denoising [3], and acquisi-
tion of multiple view feature descriptors [4]. In experiments
where comparisons have been made, KPCA almost always out-
performs standard PCA.

In order to obtain accurate nonlinear principal components to
describe a complex data distribution, a large number of training
samples are required, especially for data embedded in a high-di-
mensional space. This presents a difficulty for KPCA since it re-
quires that the whole dataset be stored and manipulated at once.
The standard KPCA computation method [5] via eigendecom-
positions involves a time complexity of O(n?), with n being the
number of training vectors, thus evaluating the KPCA is prohib-
itively expensive for large datasets. Second, the resulting kernel
principal components have to be defined implicitly by linear ex-
pansions of the training data; thus, all data must be saved after
training. For massive datasets, this translates into high costs for
storage resources and computational load during run-time appli-
cation of kernel principal components. Furthermore, for appli-
cations that require online data processing, KPCA is completely
impracticable since it is computable in a batch manner only, i.e.,
the new data is appended to the dataset and the KPCA process is
restarted. To overcome these limitations, we propose an incre-
mental KPCA computation method. The essence of our solution
lies in performing incremental PCA in the kernel induced fea-
ture space [6], [7] and using reduced-set (RS) expansions [6] to
maintain nonincreasing memory usage and update duration. The
objectives and contributions of our work can be summarized as:

1) reducing the computational complexity of KPCA to O(n)

to facilitate processing of large datasets;
2) endowing KPCA with the capability of updating previous
computations with novel data.
We also provide a theoretical analysis of the time complexity
of the proposed method and experimental results to support the
proposed algorithm.

The rest of the paper is organized as follows. Section II sur-
veys related work to put this paper in context, and Section III
describes briefly the KPCA method. Section IV elucidates the
proposed method, covering also RS compressions, KPCA basis
re-orthogonalization and analysis of complexity. Section V de-
tails the experimental results. We derive the conclusion in Sec-
tion VL.

II. RELATED WORK

All kernel methods involve computing and processing the
kernel matrix which behaves like an information bottleneck [7]
from which the kernel methods infer the characteristics of the
dataset after it is nonlinearly mapped to a higher dimensional
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feature space. For KPCA, an eigendecomposition or, equiva-
lently, a singular value decomposition (SVD) is invoked on the
kernel matrix. For large datasets, direct factorizations on the
kernel matrix become infeasible (see Section IV). An obvious
solution is to factorize the kernel matrix incrementally, i.e., fac-
torize the matrix by using a small number of columns at a time.
This is practiced in [8], where the process is interpreted from the
perspective of the empirical kernel map (EKM) [9]. Put simply,
this mapping views each vector to have been transformed to a
corresponding column in the kernel matrix. This exempts us
from storing and processing the whole kernel matrix at once.
Nonetheless, an obvious flaw of the method is that the EKM
is dataset specific. In other words, the column length increases
with the number of data. Given a novel datum, a new EKM has
to be defined (i.e., a new row and column are added to the kernel
matrix) and the factorization must be re-evaluated. This cannot
be utilized in applications such as [10] and [11] which require
true incremental KPCA.

Previously, we proposed an incremental kernel SVD (KSVD)
algorithm which is based on kernelizing incremental linear SVD
[12]. This does not imply incremental KPCA is solved, since
incremental KSVD does not require adaptive centering of the
incremental data and the appropriate adjustment of the factor-
ized subspace bases. Note that KPCA and KSVD return vastly
different results on the same dataset if it is not centered. The
work in this paper takes updating the mean into account. In [12],
reduced set expansions are constructed to compress the KSVD
basis so as to achieve constant incremental update speed. We im-
prove upon this by proposing a better compression strategy. In
addition, a kernel subspace re-orthogonalization scheme is in-
serted in the proposed algorithm. These steps can dramatically
increase the approximation accuracy of incremental KPCA and
retrospectively for incremental KSVD.

The kernel Hebbian algorithm (KHA) was proposed as an it-
erative KPCA algorithm in [2]. Essentially, the method involves
kernelizing the generalized Hebbian algorithm (GHA) which is
an online computation procedure for linear PCA. Similar in op-
erational characteristics to single-layer feedforward neural net-
works, the KHA outputs converge towards the desired kernel
principal components by iterating the algorithm using the in-
tended training data over multiple passes. While this can po-
tentially lower the time complexity of computing KPCA, it is
unclear how novel data can be incorporated to update the KHA
outputs. Most likely, it is added to the previous training set and
the iterations are restarted. Here, we seek an incremental com-
putation algorithm for KPCA such that it is unnecessary to con-
sider all available data more than once, and novel data can be
used to update a previous computation easily.

Another important development is the greedy KPCA [13],
[14] which essentially works by filtering or sampling the orig-
inal training set for a lesser but representative subset of vectors
which span approximately the same subspace as the subspace in
the kernel induced feature space spanned by the training set. The
training set is then projected onto the span of the lesser subset,
where PCA is carried out. Since the dimension of the span of
the lesser subset is smaller than the number of training vectors,
computational effort is reduced. However, one drawback is the
prior filtering of the training data which could be computation-
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ally expensive by itself. Other sampling-based methods exist
[15]-[18]. However, our solution not only tackles the time com-
plexity issue, it has the capability of updating a previous compu-
tation with data unavailable initially in a manner that maintains
nonincreasing memory usage and update duration. This is cru-
cial for applications that require online processing of KPCA.

In [4], KPCA was used to obtain feature descriptors from
multiple images for application in mobile robot navigation and
localization. After processing the training images, RS expan-
sions are constructed to compress the kernel principal compo-
nent representations to reduce computational load during run-
time application. However, no method was proposed to update
the kernel principal components as more features become avail-
able. Hence, this is not incremental KPCA.

III. KERNEL PCA FEATURE EXTRACTION

We first establish notation. Given a matrix M, the symbol
M..p,c:a defines the submatrix that contains the elements of M
within the intersection of the ath row till the b-row and the cth
column till the dth column. If the row or column specifiers are
omitted, take all available rows or columns, e.g., for M. .4 take
all rows but only the cth to dth columns. I,, indicates an identity
matrix of size n X n, 1, . represents a matrix of ones of size
r X ¢, while 0,, . symbolizes an n X ¢ zero matrix.

We begin by obtaining a data matrix a [X1--X,] €
R™*™ with x; € R™ being the ith input vector. To perform
KPCA, in principle we nonlinearly map a to a higher dimen-
sional space F using the function ¢ : R™ — F and perform
PCA in F. Using ¢, we transform ainto A = [p(x1) - - - d(Xp)]-
The map ¢ is induced by a kernel function k(-, -) that allows us
to evaluate inner products in F

k(z,z) = ¢(z) - ¢p(2), withz,z € R™. (1)
k(-,-) must be an appropriately chosen Mercer kernel so that ¢
belongs to a function space that has the structure of a so-called
reproducing kernel Hilbert space (RKHS) [6], [7]. Note that A
could be embedded in a very high-dimensional space, and we
would not want to explicitly evaluate ¢(a).

We center A by subtracting the mean g, from A. The mean
and mean-adjusted data are, respectively

@
3)

where v := ((1/n)1,,1) and v’ := (I, — 14 ,,). Consider the
matrix

1
HA =A <_1n,1> =Av
n

A=A, -vl,)=AV

M= ATA = (V)TATAY 4)
and its eigenvalue decomposition M = QAQT. By using
k(-,-), AT A can be evaluated without having to perform the
mapping ¢ since AT A contains only dot products between the
¢(x;)s. Matrix M is the kernel matrix for KPCA. Via kernel
SVD [7], the rank-r singular value factorization of A is

AT — [AQT(AT)_%] [(Ar)%} [(Q)] =urs (V)T
o)
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where Q" = Q. 1., and A" = Ay, ;... Matrix M is positive
semi-definite if it is constructed using a valid Mercer kernel [6],
[7].

The columns of U are the  most significant principal com-
ponents of A (i.e., the kernel principal components of a) ranked
according to diag(v/A"). Observe that U" are defined implic-
itly by linear expansions of mapped input data

= AVQ'(A")" % = Aa (6)

where @ := /Q"(A")~(1/2) contains the expansion coeffi-
cients. Let A" be the reconstruction of A using the first-r kernel
principal components, i.e., A" = A+ pa - It is crucial that
the data distribution in F lies near an r-dimensional subspace
(where r < n) for A" to approximate A closely. This is achiev-
able by choosing the appropriate kernel function.

The orthogonal projection coefficients of data onto the kernel
principal components in the feature space F can be considered
to be extracted nonlinear features. Given data b, we center and
project it onto the kernel principal components U” by

B=(U")'(B—pp) =a’AT[A B] m @

where B = ¢(b) and B contains the nonlinear features ex-
tracted from b. The matrix A7[A B] can be evaluated using
the kernel function since it contains only dot products between
feature space vectors.

IV. CoMPUTING KERNEL PCA INCREMENTALLY

For KPCA, as shown in Section III, the kernel matrix M
has to be wholly available before eigendecompositions can be
carried out. Since the size of M scales with n2, where n is
the number of training vectors, a large memory is required for
substantial datasets. A more crippling problem is the eigende-
composition of M which involves a time complexity of O(n?).
This can severely handicap the computation of KPCA on large
datasets. In applications that require online processing, the ar-
rival of a new vector will require the addition of a new row
and column for M. Furthermore, eigendecompositions have to
be constantly re-evaluated for an ever-growing kernel matrix in
order to obtain updated kernel subspaces. Hence, batch KPCA
is infeasible for such applications.

A. Proposed Solution

Part of our proposed solution for incremental KPCA involves
kernelizing an exact incremental PCA [10] algorithm. Note that
although the following derivations make references to feature
space vectors, their explicit existence is never required and the
mapping ¢ is always avoided. To begin, we proceed from Sec-
tion III where KPCA has been performed on training data a €
R™*™  so the same definitions of symbols apply here. To update
the KPCA given new data, we should not just append the new
data to a and reevaluate KPCA since this would correspond to
batch computation.
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An alternative approach needs to be derived. Given new data
c € R™**, the PCA of the overall data D = [A"C] is sought,
where C = ¢(c). The mean of C can be updated as

1
e = Cw, with w := -1, 1. ®)
7

Trivially, the mean of the overall data D can be updated as

n _
- = Ap,
Hp "t v,
_ 1
with A :=[A Cland v := —— {’7"} . )
n—+1|w

Following (3), C is centered with regards to pc as
C=C( -wl,;) = Cu' (10)

withw' := (I; —w1 ;). At this stage, we use these intermediate
results to construct matrix E which is defined as

- R n
E=|C n_'_Z(II'A ﬂc)]
0, ni | v -
=[A o =A
[A C] [w,] RH[_MH v
withy := || w,] ni/(n +14)[ " ]]. The significance of E will

be revealed shortly. Both upy and E are linear expansions of old
and new data, i.e., A = ¢(a) and C = ¢(c).

To perform PCA on D, we can center D with regards to pp
and invoke the SVD. However, this would be a batch PCA since
both A" and C have to be utilized. Since it is algebraically
proven [10] that the scaled covariance matrix of D is

Sp =DDT =[A" EJJA" E|T (11)
where D = D — Ip, to perform PCA on D, it is sufficient to
carry out an SVD on [A"E]. Hence, we can apply incremental
SVD [19] to update U" using E as new data to avoid accessmg
A" Given the previous factorization AT =Uy” (V’") from
(5), decompose [ATE] as

0it1, K L

cab I

T
0n,i+1:| . (12)

The other components that make up (12) are defined as

L=(U")"E (13)
H=E-UL (14)
JK SR H, (15)

L contains the projection coefficients of E onto the subspace
span(U"), while H represents new information contained in E
which are normal to the previous subspace. J is an orthogonal
basis for the subspace that is spanned by the new information,
while K is the projection of H onto span(J).
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Let E, F and G” be respectively defined as the left, middle,
and right matrix of the right-hand side of (12). We can diago-
nalize F by invoking the SVD, i.e., F = U’E'(V’)T, and sub-
stitute it into (12), yielding the updated SVD

[A" E]=U"g/ (V)T (16)
with U” = EU’ and V" = GV'. If we wish to always retain
the r most significant principal components only, U”, £" and
V7" are then revised as

U — Uffl:r a7
I — 2:,1:7’,1:7" (18)
VeV (19)

The updated r kernel principal components of [a c] is the revised
U". Note that updating U" is achieved without involving AT
and is dependent only on E and ". V" can be discarded for
applications that do not make use of it.

Via the kernel trick, the procedure above is rendered feasible
without explicitly evaluating ¢. We can see that the key to update
U" is to store ¥" and compute J, K and L for new data C.
Trivially, we can compute matrix L as

L=(U)TE=a"ATAy (20)
which is realizable by using the kernel function for inner prod-
ucts between the columns of A and A. We can define matrix H
subsequently as

H=E-U'L 1)
. —alL -
=1A C] [ T } A8 @
’Y(n—‘,-l):(n—',-i),:
where 8 := [7('7:1)(7‘:1;] Again, H is expressible as linear

combinations of mapped input data with B containing the ex-
pansion coefficients.

Instead of orthogonalizing H via the QR decomposition, we
derive an equivalent orthonormal basis for H by performing a
KSVD on H and retain all left singular vectors to form J. We
compute the kernel matrix for H as

My = BTATAB = BT MB. (23)
M is computable using the kernel function on vectors of A
and C. Hence, M is positive semi-definite, and this ensures the
positive semi-definiteness of Mg. In addition, rank(Mpg)
rank(H). Let the eigendecomposition of My = QuAn Q.
Following (5), the J and K would then be

L=

N

J =ABQuAL’ = AQ, with @ := QuAy
K =A;Qf.

(24)
(25)

Note that H can be rank deficient due to the lack of novel infor-
mation in C. In fact, H is always rank deficient by at least one
due to centering of C. Thus, the eigenvectors with zero eigen-
value should be ignored since they do not contribute towards de-
scribing span(H). To do this, retain only the first rank(Mp)
columns of ©Q and rank(Mpg) rows of K.
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Matrix F is constructed as in (12) and diagonalized as
U’Y/ (V') The left singular vectors of [ATE] are
U'=[Aa AQU =AY (26)
with ¥ := [0"‘] L T QUL o trank(My ) - The first 7
kernel principal components of [a c] are then revised as U” «—
Aa, where & := ¥, ;... Along with the overall data mean pp),
this is the updated KPCA. In addition, it is crucial to keep the
corresponding singular values £ = X7 ., for subsequent up-
dates. '

Note that there is no distinction between a training stage and
an update stage. In fact, the training stage is the update stage.
The procedure is actually started without having to know in ad-
vance how many vectors are to be processed. This feature is in-
herited from the underlying incremental PCA algorithm.

B. Maintaining Constant Update Speed

Up to this stage, the proposed algorithm is still exact. How-
ever, as shown by (9) and (26), it is unavoidable that the up-
dated mean and kernel principal components have to be ex-
panded from old and new data [A C] = ¢([a c]), where [ac] €
R™*(n+%) " Although kernelizing incremental PCA spared us
from computing a batch KPCA at every update, we still have to
store all seen data. This is detrimental towards maintaining con-
stant memory usage and update speed. To solve this problem,
we compress the mean and kernel principal component repre-
sentations by constructing RS expansions. We also propose an
effective compression strategy to maximize approximation ac-
curacy.

1) Constructing RS Expansions: Suppose we have a feature
space vector u € F (e.g., kernel principal components) ex-

panded from (n + i) input data {x1,---,Xn4y} € R™, ie.,
u = ZEZTL) @;¢(x;). Here, ¢ : R™ — F is a mapping in-
duced by a kernel function and @ = [@; - - - q(,44)]|" are the

expansion coefficients. We seek a pre-image y € R™ so that
ideally u = a¢(y), with « being a constant. Most likely an
exact pre-image will not exist [9], and we have to span u with
a set of approximate pre-images, i.e., u =Y -_, a;$(y;), with
a = [a;---a,]" being the expansion coefficients for pre-im-
ages y;. Clearly, we are interested in the case where p < (n+1)
so that compression is achieved.

For the purpose of seeking a single approximate pre-image,
it is sufficient to minimize the distance between u and its pro-
jection onto ¢(y), which is equivalent to maximizing [20]

(0 k)
o(y) - dly) k(y.y)

This can be performed using standard techniques [21], and for
particular choices of kernels, fixed-point iterations can be used
[9]. Once the optimum y is obtained, the constant « is set to
a=(u-9(y))/(d(y) - ¢(y)). Refer to [6], [9] for details.

To construct RS expansions, i.e., to find {y,---,y,}. the
process above is iterated. Given that the first approximate pre-
image yp is obtained, we repeat the process above to find a
second pre-image y» to reduce the approximation discrepancy,

(u-4(y))’

27)



1666

r+1 r+1 r+1

n=(r+1ip

== = = =]

M

@@ (b)) (o)
Fig. 1. Each block represents the matrix of linear expansion coefficients of a
set of pre-images estimated for RS expansions of r 4 1 feature space vectors.
Each square within a block indicates one coefficient, with grey squares rep-
resenting nonzero coefficients and white otherwise. (a) Pre-images are ineffi-
ciently used. (b) Pre-images of a vector are used to aid in spanning a subsequent
vector. (¢) Second pass allows full use of pre-images.

i.e., aad(y2) = u—ay¢(y1). The error on which minimization
is sought can be expanded linearly from feature space vectors

(n+i) k—1
blyr) = Y aib(xi) =Y a;ely;) (28)
=1 =1

and can be used directly in (27). The process is iterated until
k = p. Naturally, the larger p is, the closer the RS expansion
approximates the original feature space vector. At the kth iter-
ation, the optimal expansion coefficients @ = [y - - - o] of
the pre-images {y1,---, ¥} to span the original feature space

vector u = ZE:{") @;p(x;) can be computed as

a=(KY)"'K¥a (29)
with K% = ¢(y:) - #(y,) and Kz']x = P(yi) - d(x5). T KY
does not have full rank, the pseudoinverse can be used. Refer to
[6] and [9] for proofs and details.

2) Compressing Several Vectors Simultaneously: During
each KPCA update, we have (r + 1) feature space vectors (r
kernel principal components and one data mean) expanded
from a library of (n + i) mapped input data. By building RS
expansions, we compress the representation of the feature space
vectors by spanning them using p pre-images each (note that
each feature space vector requires an RS expansion). Naturally,
compression is worthwhile only if (n + i) > (r + 1)p. To
maintain nonincreasing memory usage and update duration, we
keep p constant and use not more than ¢ = (n +14) — (r + 1)p
new input data to update the KPCA at every iteration, i.e.,
n = (r + 1)p. The current library of (n + 7) expansion vectors
is overwritten with (r + 1)p pre-images which will be used for
subsequent updates. For each feature space vector, coefficients
for unrelated pre-images can be set to zero. See Fig. 1(a).

The previous approach tends to be wasteful, since the mapped
pre-images in the approximation of one feature space vector will
unlikely be orthogonal to the other feature space vectors, and
can be used essentially for free to aid in approximating the other
vectors [6]. Therefore, if us is compressed after uy, these fea-
ture space vectors will have the form

P P 2p
w R Y wdlyi), w Y mdly)+ Y m(y;)
i=1 i=1 J=p+1

(30)
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where coefficients {7;,---,7,} are determined using (29) for
{y1,---,yp} with respect to approximating u,, while new pre-
images {y(p41),- -+, ¥2p} With coefficients {711y, -, 72p}
are estimated, respectively, with iterating (27) and using (29),
to further reduce the approximation discrepancy given by us —
> mi¢(y:). The pre-image set {y1,---,y2,} is then used
to assist in compressing ug. Fig. 1(b) illustrates this process.
After all (r 4 1) feature space vectors are compressed, the final
pre-image set {y1,---,¥(4+1)p} supplants the original (n +
i)-vector dataset.

We extend this concept further to incorporate a second pass
of coefficient estimation. After completing the first stage of se-
quential forward compression, an extra boost of approxima-
tion accuracy is achievable if we re-estimate the coefficients for
each feature space vector expansion with regards to the overall
pre-image set. For example, for the kth feature space vector

(r+1)p kp
w— Y aid(yd)|| <|we— > mid(yi) (31
=1 5 i=1 2

for k < (r + 1). Coefficients {n1,---,nkp} corresponding
to pre-images {y1, -, ¥Ykp} Which were estimated during for-
ward compression is replaced with {o1,- - -, 011, } obtained
using (29) from the overall pre-image set. Although without the-
oretical guarantee, in practice an improvement over the first pass
of compression is almost always achieved. This is despite most
of the pre-images not being specifically tailored to span a par-
ticular feature space vector. See Fig. 1(c).

A positive side effect to using our compression strategy is
that since RS expansions are built repetitively, when the whole
dataset has been processed the resulting kernel principal compo-
nent expansions are automatically sparse. This is desirable for
applications that require fast utilization of KPCA results. Also,
note that one could modify (27) and attempt to minimize the
joint-distance between a set of feature space vectors and the pro-
jections these feature space vectors onto a pre-image, i.e., to es-
timate a shared pre-image across all feature space vectors [20].
This is then iterated to build the desired pre-image set. Through
experiments, given a number of total pre-images (r + 1)p to
obtain for a KPCA basis and mean, we found that this method
on average produces inferior approximations than if the pre-im-
ages are estimated for each feature space vector individually.
This is probably due to the fact that a shared pre-image has to
approximate all feature space vectors simultaneously, hence the
pre-image does not satisfactorily approximate any one of fea-
ture space vectors.

C. Enforcing the Orthogonality of KPCA Basis

Most likely a compressed basis U” = Yo obtained by
constructing RS expansions to approximate the original KPCA
basis U” = Aa from (26) is nonorthogonal due to approxima-
tion errors. Here, Y is the matrix of the mapped pre-image set
[#(y1) - - ¢(¥ (r4+1)p)] Which has coefficients o € R(+Dpxr
that are estimated to closely span the original kernel principal
components. To re-orthogonalize U” we can use kernel SVD
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again. We compute the kernel matrix associated with U given
by
M, =0"YTYo (32)
with eigenvector decomposition M, = Q,D,QZ . The orthog-
onalized basis is then Yo Q,D, (/2) 5n which we project the
approximated basis via
_I\T
P (UQODO ) Y7Yo. (33)
The orthogonal basis Yo Q,D, (1/2) cannot be used directly
because the ordering of the kernel principal components could
have been compromised due to nonuniform vector lengths

caused by RS approximations. Thus, the compressed basis is
expanded using the orthogonal basis as

. 1
U, =YoQ,D,’P=Ym (34)
where w := 60Q,D, as 2)P. To normalize the basis vectors, the
columns of P are normalized. To express the singular values
corresponding to the new basis, project the original singular
values onto this basis via

S = (ﬁg)T U's =2"Y" Aay'". (35)

The singular values associated with the new basis is v
diag(S). The nonzero off-diagonal elements of S discarded due
to the diag(-) operation correspond to the approximation errors
of the RS approximation. Note that the process does not require
explicit evaluations of the mapping ¢ since only dot products
between feature space vectors are required.

D. Selecting Parameters

Table I lists the overall pseudocode for the proposed incre-
mental KPCA procedure. The list of parameters required for the
method are as follows.

1) r: The number of kernel principal components to maintain.

2) p: The number of vectors/preimages to estimate/store per

feature space vector.

3) ¢: The number of increment vectors to use per update.
The first step involves obtaining (r 4+ 1)p vectors to perform an
initial KPCA from which r kernel principal components are ob-
tained. The steps of incremental KPCA which involve updating
and compressing then begin and are repeated until all input vec-
tors are exhausted.

Parameters r and ¢ arose from the underlying incremental
PCA algorithm, hence previous works on incremental PCA such
as [22]-[24] can provide useful insights on how these parame-
ters can be determined. Ideally, parameter r is allowed to de-
pend on the intrinsic characteristics of the input data, i.e., if the
data distribution can be parsimoniously described by the first
few kernel principal components, then r can be set accordingly
to that number. In most realistic cases, the eigenspectrum of the
data decays exponentially, i.e., the data is not confined to a flat
hyperplane. Hence what can be done is to set the value of r to re-
flect the balance between maintaining the compactness and ac-
curacy of the KPCA model. Also, through experiments we find
that setting 7 to more than what is desired helps in minimizing
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TABLE 1
PSEUDOCODE FOR INCREMENTAL KPCA

Incremental KPCA with RS compressions

Input: Training data. Value for parameters r, p and 3.
Output: Kernel principal components (KPCs) and data
mean.

1. Obtain (r + 1)p data and perform batch KPCA.
2. Retain r KPCs and data mean.
3. Initialize library with data.

4 . while Data is not exhausted do

5. Obtain 7 new data.

6. Update KPCs and data mean (§IV).

7. Append new data to library.

8. if Number of stored data > (r + 1)p then

9. Compress KPCs and mean with p pre-images each.
10. Enforce orthogonality of KPC basis.

11. Overwrite data library with pre-image set.
12. Update KPC expansion coefficients.
13. end if

14 . end while

inaccuracies since at the initial stages it is unknown which vec-
tors are aligned with the true dominant directions of variation
and which are merely noise. Parameter ¢ affects directly the total
number of updates incremental KPCA will perform. Reducing
the number of updates by setting 7 to a large value helps in min-
imizing the inaccuracy of the eventual KPCA model [23], but
this translates into more time per update.

Parameter p influences the approximation accuracy of RS com-
pressions as well as the speed of IKPCA-RS. Unfortunately these
are contrasting needs, since increased accuracy entails more pre-
imagesandhence decreased speed, and vice versa. A balance must
be struck between these two requirements. At this stage we do not
have a general rule of determining p for any particular dataset, but
through experiments we found p = 10 to be satisfactory for our
purposes. Certainly as RS estimation methods improve in terms
of speed, p can be set to a bigger value to increase the ratio of
approximation accuracy per update duration.

E. Analysis of Complexity

By examining the proposed algorithm in Section IV, we can
see that each update is dependent only on the incremental data
c and the data library a whose size is kept constant through
RS compressions. The size of ¢ and the number of kernel prin-
cipal components are usually maintained the same throughout
processing the overall dataset. However, the construction of RS
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Fig. 2. Examining the severity of drift of IKPCA-RS. The curves indicate results averaged over 100 repetitions. (a) Gaussian kernel with & = 1. (b) Polynomial

kernel of degree 2.

compressions is iterative in nature, so there is no guarantee that
each feature space vector can be compressed in the same amount
of time. However, as verified by the experiments in Section V,
for a given p and ¢, each compression does take approximately
the same time, so the proposed algorithm has linear time com-
plexity.

Itis also interesting to see how the duration for a single update
scales according to the parameters r, p and 2. Appendix I pro-
vides a summary of the time complexity involved for an update.
In particular, the eigendecomposition of matrices My and F
can potentially be time-consuming with complexity O(:*) and
O(r?®). However, the values of i and r are often tiny (0 < 4,
r < 100) relative to the size of the overall dataset (more than
3000 to make incremental computations attractive). As men-
tioned previously, p is usually set to 10. The commonly used
kernel functions require constant evaluation time, and this scales
with the dimension of the input space m with the exact time de-
pending on the specific kernel type. Second, it can be seen from
Appendix I that since all 7, p and 7 are tiny compared to the
overall dataset size, the proposed incremental KPCA algorithm
requires only a small fraction of the memory needed for batch
KPCA computations.

V. EXPERIMENTAL RESULTS

Several experiments were conducted to examine three prop-
erties of the proposed incremental KPCA algorithm: A) the
accuracy of the proposed method in approximating batch KPCA
computation; B) empirical time complexity of the proposed
method; C) effectiveness of the proposed method in practical
applications. For the following, we define IKPCA-RS as the
acronym of the proposed method, while IKPCA simply means
the proposed method without RS compressions. KPCA means
the traditional batch computation method. All programs were
executed in Matlab on a Microsoft Windows-based PC.

A. Approximation Accuracy

One major drawback of incremental computations is the
danger of drift, i.e., error accumulates across the update itera-
tions causing the discrepancy between the incremental results
and the ground truth results (computed using batch methods) to

grow indefinitely large. In the case of IKPCA-RS, discrepancies
produced from RS compressions is the major source of error.
The first experiment serves to examine the severity of drift of
incremental IKPCA-RS.

1) Using Synthetic Datasets: One hundred 2-D synthetic
datasets of 1000 vectors each were randomly generated in the
following manner: z-values have uniform distribution in [—1,1],
while y-values are generated from y = x24¢, where ¢ is normal
noise with standard deviation 0.2. The datasets were processed
as the following, with the training points uniformly sampled:

e KPCA withr = 3;

* IKPCA withr = 6,1 = 30;

e IKPCA-RS withr = 6, = 30, p = 10.

At each update iteration, the distance between the subspaces (in
RKHS) spanned by the the kernel principal components of the
incremental methods and KPCA was computed. We constructed
a simple distance measure based on the (kernel) principle angles
[25] between subspaces

d(X,¥) = (36)

where X and ) are r-dimensional subspaces (in RKHS) and
{61,---,0,} are the (kernel) principal angles between them.
The distance is bounded by /77 /2 and it reduces to 0 when
two subspaces are identical. Only 3-D subspaces (from the first
three kernel principal components) were compared—r was set
to 6 for the incremental methods to minimize error of projecting
information away during updating. The Gaussian kernel with
o = 1 and second-degree polynomial kernel were used. Fig. 2
illustrates the results.

It can be seen that initially subspaces from IKPCA-RS grad-
ually converged toward the ground truth subspaces, but eventu-
ally they remained at a stable distance apart and did not appre-
ciably diverge from the ground truth subspaces. Hence, it can
be concluded that no “growing” drift occurred. Also, the mean
of the data from IKPCA-RS and KPCA were also compared by
computing the angular difference, and similar curves as those in
Fig. 2 were obtained. In the Gaussian kernel case, the subspaces
of IKPCA actually almost converged to their respective ground
truth subspace. For the polynomial kernel case, since the RKHS
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TABLE II
COMPARISON OF PROJECTION VALUES OF KPC

Gaussian kernel with 0 = 1
IKPCA-RS

KPC Difference

3
05:10° 10 1500°  2x10°  25x10°
Scale of difference
2nd degree Polynomial kernel
KPC KPCA IKPCA-RS Difference
= o
1
2
3

I
0.005 0.01 0.015
Scale of difference

0.02 0.025

is only 6-D, setting r = 6 for IKPCA means the data can be per-
fectly reconstructed by the kernel principal components, hence
no approximation error occurred.

Perhaps of more practical importance is the effect of the
difference between the kernel principal components in the input
space. For one of the generated datasets, the subspace distance
between the subspaces of KPCA and IKPCA-RS is about 0.07
(Gaussian) and 0.08 (polynomial). The projection values of
points sampled uniformly in the 2-D input space, computed
using (7), are compared. Table II illustrates the results: Red
dots are the input vectors, while blue contour lines and back-
ground shading depict the projection values. It can be seen that
differences in the projection values are very small, hence it can
be concluded that results from IKPCA-RS follow the ground
truth results closely.

2) Processing Image Datasets: The previous experiment was
repeated for datasets of real images. We made use of the fol-
lowing four datasets: a) the Teapots dataset which contains 400
images of a teapot undergoing a full rotation; b) 1000 images
of the digit “3” from the MNIST handwritten digits dataset;
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c) the Freyface database which contains 1965 images of a video
recording of a face with changing pose and expression; d) the
Yale Face Database B [26] which contains 5760 images of faces
in different poses and lighting conditions. IKPCA-RS param-
eters are r = 20, p = 10 and ¢ 30, with the increment
vectors drawn randomly. Despite maintaining the first 20 kernel
principal components, only the first 6 are compared against the
ground truth kernel principal components from KPCA using
(36).

Fig. 3 illustrates the results. It can be seen that the eventual
discrepancy of IKPCA-RS from KPCA varies between the
datasets. Some are as high as 2.0 subspace distance, while
some are as low as 0.2 subspace distance. Also, the difference
between IKPCA and IKPCA-RS illustrates how much error the
RS compressions have caused, and this varies as well between
the datasets. Certainly, the kernel function and parameter plays
a part too since these affect the distribution of the datasets in
the RKHS. Nonetheless, the curves exhibit that no drift has
occurred for IKPCA-RS. An objective comparison between
the results of KPCA, IKPCA, and IKPCA-RS is by using the
average residual error of training data points in the RKHS
(distances between the data points and their projections onto
the kernel principal components); refer to [7] on how this
can be computed. These are summarized in Table III, where
it can be seen that the average residual error of all three
methods are similar. Nonetheless, whether the discrepancy of
IKPCA-RS from the ground truth is acceptable depends on
the intended application of the kernel principal components.

B. Empirical Time Complexity

Here, we examine the empirical time complexity of
IKPCA-RS. First, the 2-D synthetic dataset used in Sec-
tion V-A was created in various sizes and processed with
IKPCA-RS with parameters » = 3, p = 10, and + = 30. The
Gaussian kernel with o = 1 and the second-degree polynomial
kernel were used. Secondly, images of digit “3” from the
MNIST database were used by creating subsets of various
sizes by random sampling. The subsets were then processed
with IKPCA-RS with parameters » = 5 and 20, p = 10, and
1 = 30. Again, the Gaussian kernel with o 250 and the
second-degree polynomial kernel were used. The elapsed time
for each IKPCA-RS instance was recorded. The processing
times of batch KPCA for various sizes of the 2-D synthetic
dataset were also obtained. Processing times of KPCA are
independent of the number of kernel principal components
maintained, type of data, and kernel; hence, these can be used
directly for comparisons with IKPCA-RS times for the MNIST
images.

Fig. 4 shows the results which confirm that processing time
for IKPCA-RS scales linearly with the number of data. Also,
as expected KPCA scales with complexity O(n?). It can be
seen that processing times for IKPCA-RS vary depending on the
type of data (i.e., the length of the input vectors), type of kernel
function and the number of kernel principal components main-
tained (see Section IV-E and Appendix I). Also, at this stage
performing batch KPCA is more attractive than IKPCA-RS for
small scale datasets—IKPCA-RS requires approximately 800 s
to process 1000 images from the MNIST database, while KPCA
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TABLE III
AVERAGE RESIDUAL ERROR OF THREE KPCA METHODS
KPCA IKPCA IKPCA-RS
Teapots 1.4841 1.4744 1.4481
Digit “3” 1.1247 1.1241 1.0917
Freyface 1.0953 1.0939 1.0672
Yale Faces | 2.6272 x 103 | 2.6272 x 1013 | 2.6265 x 1013

requires only about 30 s. Nonetheless, for much larger datasets
(e.g., more than 10 000 vectors), it is expected that IKPCA-RS
will be the more viable alternative. Most of the time in each

update duration of IKPCA-RS is used for performing RS com-
pressions, hence improving the implementation or method of
pre-image estimation can directly speed up IKPCA-RS. Note
that pre-image estimation is still a relatively new area within
the kernel literature [6].

C. Practical Applications

We demonstrate three applications for IKPCA-RS. The first
application requires processing massive amounts of images,
and, thus, it benefits from a lowered memory requirement
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TABLE 1V
KERNEL EIGENFACES CLASSIFICATION RESULTS

Algorithm Training images | Kernel Error rate (%)
KPCA 1000 (Set 3) f, o =1 65.92 (501/760)
IKPCA-RS 1000 (Set 3) f, o =1 66.84 (508/760)
KPCA 1000 (Set 3) poly, d =2 | 49.61 (377/760)
IKPCA-RS 1000 (Set 3) poly, d =2 | 50.26 (382/760)
IKPCA-RS 5000 (Set 1) f, o =1 46.58 (354/760)
IKPCA-RS 5000 (Set 1) poly, d =2 | 26.97 (205/760)

and time complexity afforded by substituting batch KPCA
with IKPCA-RS. The second application requires on-the-fly
processing of images obtained from a video stream, and, thus, it
serves to exhibit the advantage of being able to process KPCA
in an online manner (a capability unavailable in methods like
[2] and [8] as explained in Section II). The third application
serves to investigate the feasibility of computing IKPCA-RS
in a nonstationary environment, i.e., the KPCA model is re-
quired to adapt to accurately describe recent observations only.
Without modifications, this cannot be performed using [2] and
[8].

1) Face Recognition: The kernel eigenfaces method [1] for
face recognition was implemented on the Yale Face Database
B [26] which contains 5760 images of ten subjects in multiple
poses and lighting conditions. The images were cropped and
resized to 20 x 20 pixels before being normalized to [0, 1]
in intensity. The dataset was then randomly partitioned into
two disjoint subsets: Set 1 contained 5000 training images,
and Set 2 contained 760 test images. Another set called Set 3
was created by randomly choosing 1000 images from Set 1.
Table IV summarizes the training schemes that were carried
out. The kernels were chosen based on [1]. By training Set 1
with IKPCA-RS (with parameters » = 36, p = 10, and : = 30),
we avoided storing a massive 5000 x 5000 kernel matrix
for KPCA (the largest intermediate matrix for IKPCA-RS is
Q € R*0>31), For classification, the training and testing images
were projected onto the first-36 kernel principal components
and the k-nearest neighbour rule with & = 10 was evaluated.
The results in Table IV show that by being able to process more
exemplars, the kernel principal components obtained using
IKPCA-RS from Set 1 managed to outperform those estimated
via KPCA on Set 3. Moreover, the performances of IKPCA-RS
and KPCA on Set 3 were almost identical. Despite the modest
accuracy compared to other face recognition methods, what is
demonstrated here is the benefit of being able to process large
datasets, as well as the approximation accuracy of IKPCA-RS.
In [1], kernel eigenfaces yielded a similar error rate of 27.27%
(45/165) on the much smaller and less challenging Yale Face
Database.!

2) Online Face Recognition From Video for Access Control:
This requires face images from video streams to be processed
on-the-fly and decisions to be made quickly for the conve-
nience of the user. Certainly, online processing also relieves
the demand for the amount of memory required, especially

! Available at http://www.vision.ucsd.edu/kriegman-grp/software.html. Note
that we are not trying to present the best face recognition method. Our aim is to
show how an existing KPCA-based method can be improved by allowing it to
process larger datasets.

1671

Fig. 5. Examples of preprocessed images from the face video database. Note
the variation in pose, expression, and lighting that affects the images. Also, a lot
of background clutter is included by the face detector.

if the algorithm is implemented on a low-cost non-PC based
system. We implemented the kernel mutual subspace (KMS)
method [11] which essentially works by building a subspace
for a set of images of the same face (from a video sequence) in
a kernel-induced feature space, and identities are distinguished
by comparing subspaces using distance measures such as
(36) in RKHS. Performing face recognition in such a manner
was also proposed in [25]. The subspaces are spanned by the
principal (kernel) eigenvectors of the face image set estimated
using KPCA without a prior mean adjustment. Therefore, when
IKPCA-RS is used to perform online KMS, the mean updating
steps in Section IV can be discarded and matrix E in (11) is
simply replaced with the increment images C (basically, this is
what was proposed in our previous work [12], but we improve
it with the enhancements introduced in this paper).

A 17-subject face video database was collected. Each subject
has ten image sets of about 100 images each. The AdaBoost
face detector [27] was applied to segment the faces; Fig. 5 il-
lustrates. One image set per subject was used for training, while
the rest were used for testing (allowing a total of 153 tests). Sub-
spaces of five-dimensions were built to represent the face image
sets using IKPCA-RS, while batch KCPA and linear PCA [this
is called the mutual subspace method (MSM) [28]] were also
carried out for benchmarking purposes. For the kernel methods,
the Gaussian kernel with o = 300 was used. The parameters
for IKPCA-RS are » = 5, p = 10, and ¢ 5. From the
ROC curves in Fig. 6(a), it can be seen that IKPCA-RS re-
sults follow KPCA results closely. Also, the kernel methods
performed better than linear PCA. Fig. 6(b) depicts how the
subspaces estimated using IKPCA-RS “move” with reference to
the ground-truth subspaces from KPCA. No visible drift can be
observed, while the final discrepancy between IKPCA-RS and
KPCA will not significantly affect the recognition performance
since it is far below the average within-class distance. Our im-
plementation (unoptimised) currently runs at about 5 frames/s.

3) Visual Tracking: In [10], incremental PCA was used
to adapt appearance models of objects built using PCA to
perform visual tracking. We extend this concept to allow visual
tracking using KPCA appearance models which is adapted
using IKPCA-RS. Appearance modeling by KPCA provides
the opportunity of utilizing specially crafted kernels for specific
objects in the task of tracking. For example, see [29] and [30].
Given a KPCA model which encodes the recent appearance
of the object of interest up to the previous frame, candidate
subimages of the current frame which could potentially enclose
the object of interest are tested by computing their orthog-
onal distance to the subspace spanned by the kernel principal
components. Note that mean-adjustment is required here. The
subimage with the closest matching appearance is resized to a
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Fig. 7. First sequence involves tracking a face which undergoes large pose changes and translations. The second sequence involves tracking a soft-toy which un-
dergoes swift movement with motion blur and large scale-variation. The third sequence involves tracking the back of a vehicle on a busy street at night. IKPCA-RS
managed to track the objects of interest throughout the whole of their respective sequences.

fixed size and used to update the KPCA model. Fig. 7 shows
IKPCA-RS tracking results of three video sequences.?

In our experiments, KPCA updates are performed after every
five tracks; hence, the parameters for IKPCA-RS are r = 5,
p = 10, and © = 5. The compression stage in IKPCA-RS
allows tracking to be performed with nonincreasing durations
across frames. On average, IKPCA-RS runs at about 5 frames/s.
We followed the approach of [31] to generate the candidate
subimages: A fixed-shaped Gaussian distribution is placed

2Available at http://www.cs.toronto.edu/~dross/.

over the position and orientation of the previous tracking rec-
tangle, and 200 candidate subimages are drawn based on the
Gaussian—this basically means that tracking depends mainly
on the effectiveness of the appearance model. Sophisticated
motion estimation like particle filtering [10] can be employed to
aid in tracking of sequences with more challenging trajectories.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a method for incrementally
computing KPCA. This is useful for processing large datasets
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TABLE V
MEMORY SIZE AND TIME COMPLEXITY FOR A SINGLE KPCA UPDATE

Matrix/Process Memory size Time complexity
L r(i+1) O(n2), O(i2), O(r)
B (n+4)@E+1) O(n), O(i2)
My (i+1) 0(n?), O(i®)
eig(Mp) - O(i3)
Q (n+1i)@GE+1) O(n), O(3)
K (14 1)2 O(i3)
F (r+d)(r+i+1) -
eig(F) - O(r3), 0(i3)
R (n+1)(r +1) O(n), O(3), O(r?2)

and potentially for online computations. Through theoretical
analyses and experimental results it is shown that the proposed
method has linear time complexity, much better than the stan-
dard approach which involves a complexity of O(n?). Further-
more, the method can easily update a previous KPCA computa-
tion with novel data. Experimental results show that the method
can accurately approximate standard KPCA computations. Sev-
eral practical applications using the proposed method were also
demonstrated. Future work include improving our implemen-
tation of the proposed method, especially the RS compression
stage, to enable real-time processing of data. Second, we wish to
investigate using noniterative methods for constructing RS ex-
pansions such as [32] which can potentially improve the speed
and accuracy of RS compressions.

APPENDIX 1
MEMORY REQUIREMENT AND TIME COMPLEXITY

Table V lists the memory requirement and time complexity
involved for performing a single KPCA update (see Section IV).
As an example of how we derive the complexity results, con-
sider obtaining matrix L = a” AT Asy. Computing ATA =
#(a)T ¢([a c]) requires (n + i)n kernel evaluations. Producing
a” AT A involves merely matrix multiplications, and with & €
R™*" and AT A € R™*("+9)_this requires 2rn(n + ) compu-
tations. With a” AT A € R™*("t9) and 4 € RC*+)*(+1) the
final step @” AT A+ involves 2r(n + i)(i + 1) computations.
The total computational effort required is

(n+1) (nKy +2r(n+i+1)) 37)
with K, being the computational effort required for one kernel
evaluation. K, is a function of input space dimensionality, m,
and the type of kernel used. From (37), for a fixed kernel, the
time for computing L scales with regards to the independent
variables n, 4, and r as O(n?), O(i%) and O(r).
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